题目内容

如图,在四边形ABCD中AB∥CD,若加上AD∥BC,则四边形ABCD为平行四边形.现在请你添加一个适当的条件:________,使得四边形AECF为平行四边形.(图中不再添加点和线)

BE=DF
分析:添加条件是BE=DF,根据三角形全等的性质和一组对边平行且相等的四边形是平行四边形证明.
解答:添加的条件:BE=DF.
证明:∵四边形ABCD为平行四边形
∴AB=CD,∠ABE=∠CDF
又∵BE=DF
∴△ABE≌△CDF
∴AE=CF,∠AEB=∠CFD
∴∠AEF=∠EFC
∴AE∥FC
∴四边形AECF为平行四边形.
故答案为:BE=DF.
点评:本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网