题目内容
【题目】如图,在平面直角坐标系中,已知四边形ABCD为菱形,且
(0,3)、
(﹣4,0).
(1)求经过点
的反比例函数的解析式;
(2)设
是(1)中所求函数图象上一点,以
顶点的三角形的面积与△COD的面积相等.求点P的坐标.
![]()
【答案】(1)
;(2)P(
,
)或(-
,-
).
【解析】试题分析:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.
(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式; (2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.
试题解析:(1)由题意知,OA=3,OB=4,
在Rt△AOB中,AB=
=5,
∵四边形ABCD为菱形,
∴AD=BC=AB=5,
∴C(-4,-5).
设经过点C的反比例函数的解析式为y=
(k≠0),
则
=-5,解得k=20.
故所求的反比例函数的解析式为y=
.
(2)设P(x,y),
∵AD=AB=5,OA=3,
∴OD=2,S△COD=
×2×4=4,
即
OA|x|=4,
∴|x|=
,
∴x=±
,、
当x=
时,y=
=
,当x=-
时,y=
=-
,
∴P(
,
)或(
,
).
【题目】某学校一班级开展为贫困山区学生捐钱助学活动,该班有20名学生捐出了自己的零花钱,捐款数如下:(单位:元)
19 | 20 | 25 | 30 | 28 | 27 | 26 | 21 | 20 | 22 | 24 | 23 | 25 | 29 | 27 | 28 | 27 | 30 | 19 | 20 |
该班老师准备将此次活动的捐款数据制成频数分布直方图,在制图时请你帮老师算出以下数据:
(1)计算最大值与最小值的差;
(2)若选定组距为2计算将这20个数据分成的组数;并计算将第一组的起点定为18.5时捐款数在26.5-28.5范围内的频数;
(3)计算第一组和最后一组这两个组内包含的所有样本的平均数