题目内容
如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.
(1)求证:PE=PD;
(2)若CE:AC=1:5,BC=10,求BP的长.
如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论,上述结论一定正确的是______(填代号).
①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.
阅读:分解因式
【解析】原式
此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法。此题为用配方法分解因式。
请体会配方法的特点,然后用配方法解决下列问题:
分解因式:
把x2-y2-2y-1分解因式结果正确的是( )。
A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)
下列多项式中,能用提公因式进行分解因式的是( )
A. B. C. D.
如图,已知△ABC 的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是________.
把命题“同角的余角相等”改写成如果________,那么________.
计算:+(π﹣3)0﹣()﹣1+|1﹣|
已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.