题目内容
如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是
- A.等腰梯形
- B.矩形
- C.菱形
- D.正方形
C
分析:连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.
解答:
解:连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB;
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=
AC;
同理可证得:NP=
DB,QP=
AC,MQ=
BD;
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选C.
点评:此题主要考查的是菱形的判定方法,能发现并构建出全等三角形,是解答本题的关键.
分析:连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.
解答:
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB;
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=
同理可证得:NP=
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选C.
点评:此题主要考查的是菱形的判定方法,能发现并构建出全等三角形,是解答本题的关键.
练习册系列答案
相关题目