题目内容
如图,双曲线
经过
的两个顶点
、
轴,连接
,将
沿
翻折后得到
,点
刚好落在线段
上,连接
,
恰好平分
与
轴负半轴的夹角,若
的面积为3,则
的值为
。
![]()
【答案】
-6.
【解析】
试题分析:设BC的延长线交x轴于点D,连接OC,点C(-m,n),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=
mn=
,由AB∥x轴,得点A(a-m,2n),由题意得2n(a-m)=k,即可得出答案.
试题解析:如图:
![]()
设BC的延长线交x轴于点D,
设点C(-m,n),AB=a,
∵∠ABC=90°,AB∥x轴,
∴CD⊥x轴,
由折叠的性质可得:∠AB′C=∠ABC=90°,
∴CB′⊥OA,
∵OC平分OA与x轴负半轴的夹角,
∴CD=CB′,
在Rt△OB′C和Rt△ODC中,
∵
,
∴Rt△OCD≌Rt△OCB′(HL),
再由翻折的性质得,BC=B′C,
∴BC=CD,
∴点B(-m,2n)
∵双曲线
经过Rt△ABC的两个顶点A、C,
∴S△OCD=
|mn|=
|k|
∴mn=
k
∵AB∥x轴,
∴点A(a-m,2n),
∴2n(a-m)=k
∴an=k
∴k=-6
考点: 反比例函数综合题.
练习册系列答案
相关题目