题目内容

如图,O是正方形ABCD的对角线BD上一点,⊙O与AB,BC都相切,点E,F分别在边AD,DC上,现将△DEF沿EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处,若DE=2,则正方形ABCD的边长是   
【答案】分析:根据折叠和正方形性质求出四边形EOFD是正方形,求出边长为2,根据勾股定理求出OM=,即可求出正方形ABCD的边长.
解答:解:∵沿EF折叠D和O重合,EF与⊙O切于M,
∴OM=MD,OE=ED=2,DF=OF,
∵四边形ABCD是正方形,
∴∠EDO=45°=∠FDO=∠DOF,∠ADF=∠EOF=90°,
∴∠DFO=90°,
即四边形EOFD是正方形,
DF=DE=OF=2,
在△DFO中,由勾股定理得:DO==2
∴OM=
延长FO交AB于Q,延长EO交BC于R,
则OQ⊥AB,OR⊥BC,
则⊙O切AB于Q,切BC于R,
∴OQ=OR,
∴∠OQB=∠ORB=∠QBR=90°,
∴四边形BQOR是正方形,
∴BQ=OQ=OR=BR=OM=
∵四边形AQOE是矩形,
∴AQ=EO=2,
∴正方形ABCD的边长是2+
故答案为:2+
点评:本题考查了正方形性质,折叠性质,切线性质等知识点的综合运用,题目综合性比较强,难度偏大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网