题目内容


如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.


       证明:∵AD∥BC,

∴∠B+∠BAD=180°,∠D+∠C=180°,

∵∠BAD=∠BCD,

∴∠B=∠D,

∴四边形ABCD是平行四边形,

∵AM⊥BC,AN⊥DC,

∴∠AMB=∠AND=90°,

在△ABM和△ADN中,

∴△ABM≌△ADN(AAS),

∴AB=AD,

∴四边形ABCD是菱形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网