ÌâÄ¿ÄÚÈÝ
Ôڱ߳¤Îª6cmµÄÕý·½ÐÎABCDÖУ¬µãE£¬F£¬G£¬H·Ö±ð°´A?B£¬B?C£¬C?D£¬D?AµÄ·½Ïòͬʱ³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÔÈËÙÔ˶¯£®
£¨1£©ÔÚÔ˶¯ÖУ¬µãE£¬F£¬G£¬HËùÐγɵÄËıßÐÎEFGHΪ
A£ºÆ½ÐÐËıßÐΣ»B£º¾ØÐΣ»C£ºÁâÐΣ»D£ºÕý·½ÐΣ®
£¨2£©ËıßÐÎEFGHµÄÃæ»ýs£¨cm2£©ËæÔ˶¯Ê±¼ät£¨s£©±ä»¯µÄͼÏó´óÖÂÊÇ

£¨3£©Ð´³öËıßÐÎEFGHµÄÃæ»ýS£¨cm2£©¹ØÓÚÔ˶¯Ê±¼ät£¨s£©±ä»¯µÄº¯Êý¹ØÏµÊ½£¬²¢ÇóÔ˶¯¼¸ÃëÖÓʱ£¬Ãæ»ý×îС£¬×îСֵÊǶàÉÙ£¿
½â£º£¨1£©Ò×µÃEHºÍEFËùÔÚµÄÈý½ÇÐÎÈ«µÈ£¬ÄÇôEF=EH£¬½ø¶øÇóµÃÆäËüËÄÌõ±ßÏàµÈ£¬ÄÇôEFGHΪÁâÐÎ
ÓÉÈ«µÈµÃ¡ÏAEH=¡ÏEFB
¡ß¡ÏEFB+¡ÏBEF=90¡ã
¡à¡ÏAEH+¡ÏBEF=90¡ã
¡à¡ÏHEF=90¡ã
¡àEFGHÊÇÕý·½ÐΣ»
¹ÊÑ¡D£®
£¨2£©ÓÉͼ¿ÉÖª£¬µ±E¡¢F¡¢G¡¢HΪËıßÐÎABCD¸÷±ßÖеãʱ£¬
ËıßÐÎEFGHÃæ»ý×îС£¬¿ÉµÃÃæ»ý±ä»¯¾¹ýÁË¡°ÓÉ´ó±äС£¬ÔÙÓÉС±ä´ó¡±µÄ¹ý³Ì£¬
ÓÚÊǿɵÃËıßÐÎEFGHµÄÃæ»ýs£¨cm2£©ËæÔ˶¯Ê±¼ät£¨s£©±ä»¯µÄͼÏó´óÖÂÊÇÅ×ÎïÏߣ®
¹ÊÑ¡B£®
£¨3£©ÉèAE=xcm£¬¡àS=EH2=AE2+AH2=x2+£¨6-x£©2=2x2-12x+36=2£¨x-3£©2+18£¬
¿ÉÖªµ±x=3ʱ£¬S×îСֵ=18£®
·ÖÎö£º£¨1£©¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖÊÇó³öEF=EH£¬ÅжϳöEFGHΪÁâÐΣ¬ÔÙÇó³öÒ»¸ö½ÏΪ90¶È¼´¿É£»
£¨2£©Ó¦¸ÃÊÇÓÉ´ó±äС£¬½ø¶ø±ä´óµÄ¹ý³Ì£»
£¨3£©s=EH2=AE2+AH2£¬µ±x=-
ʱ£¬yÓÐ×îСֵ£®
µãÆÀ£º±¾ÌâÓõ½µÄ֪ʶµãΪ£ºÓÐÒ»¸ö½ÇÊÇ90¶ÈµÄÁâÐÎÊÇÕý·½ÐΣ¬µ±¶þ´Îº¯ÊýµÄ¶þ´ÎÏîµÄϵÊý´óÓÚ0ʱ£¬µ±x=-
ʱ£¬º¯ÊýÓÐ×îСֵ
£®
ÓÉÈ«µÈµÃ¡ÏAEH=¡ÏEFB
¡ß¡ÏEFB+¡ÏBEF=90¡ã
¡à¡ÏAEH+¡ÏBEF=90¡ã
¡à¡ÏHEF=90¡ã
¡àEFGHÊÇÕý·½ÐΣ»
¹ÊÑ¡D£®
£¨2£©ÓÉͼ¿ÉÖª£¬µ±E¡¢F¡¢G¡¢HΪËıßÐÎABCD¸÷±ßÖеãʱ£¬
ËıßÐÎEFGHÃæ»ý×îС£¬¿ÉµÃÃæ»ý±ä»¯¾¹ýÁË¡°ÓÉ´ó±äС£¬ÔÙÓÉС±ä´ó¡±µÄ¹ý³Ì£¬
ÓÚÊǿɵÃËıßÐÎEFGHµÄÃæ»ýs£¨cm2£©ËæÔ˶¯Ê±¼ät£¨s£©±ä»¯µÄͼÏó´óÖÂÊÇÅ×ÎïÏߣ®
¹ÊÑ¡B£®
£¨3£©ÉèAE=xcm£¬¡àS=EH2=AE2+AH2=x2+£¨6-x£©2=2x2-12x+36=2£¨x-3£©2+18£¬
¿ÉÖªµ±x=3ʱ£¬S×îСֵ=18£®
·ÖÎö£º£¨1£©¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖÊÇó³öEF=EH£¬ÅжϳöEFGHΪÁâÐΣ¬ÔÙÇó³öÒ»¸ö½ÏΪ90¶È¼´¿É£»
£¨2£©Ó¦¸ÃÊÇÓÉ´ó±äС£¬½ø¶ø±ä´óµÄ¹ý³Ì£»
£¨3£©s=EH2=AE2+AH2£¬µ±x=-
µãÆÀ£º±¾ÌâÓõ½µÄ֪ʶµãΪ£ºÓÐÒ»¸ö½ÇÊÇ90¶ÈµÄÁâÐÎÊÇÕý·½ÐΣ¬µ±¶þ´Îº¯ÊýµÄ¶þ´ÎÏîµÄϵÊý´óÓÚ0ʱ£¬µ±x=-
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿