题目内容

某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:
造型花卉  甲  乙
A8040
B5070
(1)符合题意的搭配方案有几种?
(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?
【答案】分析:(1)设需要搭配x个A种造型,则需要搭配B种造型(60-x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可.
(2)计算出每种方案的花费,然后即可判断出答案.
解答:解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60-x)个,
则有
解得37≤x≤40,
所以x=37或38或39或40.
第一种方案:A种造型37个,B种造型23个;
第二种方案:A种造型38个,B种造型22个;
第三种方案:A种造型39个,B种造型21个.
第四种方案:A种造型40个,B种造型20个.

(2)分别计算四种方案的成本为:
①37×1000+23×1500=71500元,
②38×1000+22×1500=71000元,
③39×1000+21×1500=70500元,
④40×1000+20×1500=70000元.
通过比较可知第④种方案成本最低.
答:选择第四种方案成本最低,最低为70000元.
点评:此题考查了一元一次不等式组的应用,是一道实际问题,有一定的开放性,(1)根据图表信息,利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网