题目内容
如图1,在Rt△ABC中,∠ABC=90°,∠B=30°,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长交AB于点F,过点F作FG∥AC交AD(或延长线)于点G.(1)当n=1时,则
| FB |
| FA |
| EC |
| EF |
(2)如图2,当n=
| 1 |
| 4 |
| 5 |
| 2 |
(3)如图3,当n=
| FB |
| FA |
| 1 |
| 2 |
分析:(1)首先过点D作DH∥CF交AB于点H,由n=1时,可得E为AD的中点,然后根据平行线分线段成比例定理,即可求得答案;
(2)首先过点D作DH∥CF交AB于点H,设AF=x,则BH=HF=nx.由∠B=30°,即可求得AC的值,然后过点C作CM⊥AB于点M,易求得MC与MF的值,由勾股定理即可求得FC2=MF2+MC2,然后由平行线分线段成比例定理,即可证得FG2=
FE•FC;
(3)过点D作DH∥CF交AB于点H,设BH=x,则HF=x,FA=4x,根据平行线分线段成比例定理,即可求得n的值.
(2)首先过点D作DH∥CF交AB于点H,设AF=x,则BH=HF=nx.由∠B=30°,即可求得AC的值,然后过点C作CM⊥AB于点M,易求得MC与MF的值,由勾股定理即可求得FC2=MF2+MC2,然后由平行线分线段成比例定理,即可证得FG2=
| 5 |
| 2 |
(3)过点D作DH∥CF交AB于点H,设BH=x,则HF=x,FA=4x,根据平行线分线段成比例定理,即可求得n的值.
解答:解:(1)当n=1时,E为AD的中点,
过点D作DH∥CF交AB于点H,
则BH=HF=FA,CF=2DH=2×2EF=4EF,
∴
=2,
=3.
(2)过点D作DH∥CF交AB于点H,
设AF=x,则BH=HF=nx.
∵∠B=30°,
∴AC=
AB=
(2n+1)x,
过点C作CM⊥AB于点M,
∵∠ACM=∠B=30°,
∴MC=ACcos∠ACM=ACcos30°=
(2n+1)x•
=
x,AM=
AC=
×
(2n+1)x=
x,
∴MF=AF-AM=x-
x=
x,
∴FC2=MF2+MC2=(
x)2+(
x)2=
x2,
∵
=
=
=
,
∴FE=
HD=
×
FC,
∴FE•FC=
FC2,
=
,
∴
=
,即
=
,
∴当n=
时,FC2=
x2=x2,FE•FC=
FC2=
x2,
∴x2=
FE•FC.
∵FG∥AC,
∴
=
=
,
∴FG=
AC=
•
x=x,
∴FC2=x2=
FE•FC.
(3)过点D作DH∥CF交AB于点H,
设BH=x,则HF=x,FA=4x,
∴
=
=
=
,
∴n=
.

过点D作DH∥CF交AB于点H,
则BH=HF=FA,CF=2DH=2×2EF=4EF,
∴
| FB |
| FA |
| EC |
| EF |
(2)过点D作DH∥CF交AB于点H,
设AF=x,则BH=HF=nx.
∵∠B=30°,
∴AC=
| 1 |
| 2 |
| 1 |
| 2 |
过点C作CM⊥AB于点M,
∵∠ACM=∠B=30°,
∴MC=ACcos∠ACM=ACcos30°=
| 1 |
| 2 |
| ||
| 2 |
(2n+1)
| ||
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n+1 |
| 4 |
∴MF=AF-AM=x-
| 2n+1 |
| 4 |
| 3-2n |
| 4 |
∴FC2=MF2+MC2=(
| 3-2n |
| 4 |
(2n+1)
| ||
| 4 |
| 3+4n |
| 4 |
∵
| FE |
| HD |
| AF |
| AH |
| x |
| x+nx |
| 1 |
| 1+n |
∴FE=
| 1 |
| 1+n |
| 1 |
| 1+n |
| 1 |
| 2 |
∴FE•FC=
| 1 |
| 2+2n |
| FE |
| FC |
| 1 |
| 2+2n |
∴
| FE |
| FC-FE |
| 1 |
| 2+2n-1 |
| FE |
| EC |
| 1 |
| 2n+1 |
∴当n=
| 1 |
| 4 |
| 3+4n |
| 4 |
| 1 |
| 2+2n |
| 2 |
| 5 |
∴x2=
| 5 |
| 2 |
∵FG∥AC,
∴
| FG |
| AC |
| FE |
| EC |
| 1 |
| 2n+1 |
∴FG=
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 2n+1 |
| 2 |
∴FC2=x2=
| 5 |
| 2 |
(3)过点D作DH∥CF交AB于点H,
设BH=x,则HF=x,FA=4x,
∴
| DE |
| EA |
| HF |
| FA |
| x |
| 4x |
| 1 |
| 4 |
∴n=
| 1 |
| 4 |
点评:此题考查了平行线分线段成比例定理,三角函数的性质,勾股定理等知识.此题综合性较强,难度较大,解题的关键是注意方程思想与数形结合思想的应用.
练习册系列答案
相关题目