题目内容

如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=


  1. A.
    160°
  2. B.
    130°
  3. C.
    120°
  4. D.
    100°
B
分析:根据三角形的内切圆得出∠OBC=∠ABC,∠OCB=∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.
解答:∵点O是△ABC的内切圆的圆心,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠BAC=80°,
∴∠ABC+∠ACB=180°-∠BAC=100°,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-50°=130°.
故选B.
点评:本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网