题目内容
(8分)先化简,再求值:(a+2b)(a﹣2b)+,其中a=3,b=﹣.
如图,已知点M,N,G为同一平面直角坐标系中的三点,若点M的坐标为(2,-2),
点N的坐标为(4,-1),则G的坐标为 ;
(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.
(1)购买B种笔记本 本(用含x的代数式表示);
(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.
如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()
A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD
(12分)在正方形ABCD中,AB=4.
(1)正方形ABCD的周长为 ;
(2)如图1,点E、F分别在BC和AD上,点P是线段EF上的动点,过点P作EF的垂线L,若直线L与正方形CD、AB的交点分别在G、H.
①求证:EF=GH;
②已知,BE=2,AF=1,若线段PE的长度为a,求a的最小值;
③如图2,在②的条件下,已知AH=,PE=2PF,求图中阴影部分的面积.
我们用反证法证明命题“在一个三角形中,至少有一个内角小于或等于60°”时,应先假设 .
计算:= .
对于实数,可用[]表示不超过的最大整数[4]=4,[]=1.现对数72进行如下三次操作后变为1,过程为:第一次[]=8,第二次[]=2,第三次[]=1,类似的对数81进行如下三次操作后变为1,过程为:[]=9,[]=3,[]=1.请写对数10000进行若干次操作后变为1的过程: .
二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.
(1)用含m的代数式分别表示a、b、c;
(2)如图,当m取何值时,△ADC为直角三角形?