题目内容
已知关于x的不等式组的整数解共有4个,则a的取值范围是____________.
-2≤a<-1
【解析】解不等式可得a<x<3,整数解有4个,则x=2、1、0、-1,则-2≤a<-1.
3、已知△ABC≌△EDF,则对应边为 ,对应角为 。
4、某镇的两个村A,B均位于河岸L的南面,镇政府决定为两个村通自来水,,应在河岸L上建一个自来水厂P,才能使水厂到两个村的距离相等。
如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=( )米.
A.7.5 B.15 C.22.5 D.30
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2.
下列结论:
①4a+b=0;
②9a+c>3b;
③8a+7b+2c>0;
④当x>-1时,y的值随x值的增大而增大.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
A. B. C. D.
如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2015的纵坐标为( )
A.0 B.﹣3×()2013
C.(2)2014 D.3×()2013
如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).
①画出“基本图形”关于原点O对称的四边形A1B1C1D1,并填出A1,B1,C1,D1的坐标.
A1( , ) B1( , )
C1( , ) D1( , )
②画出“基本图形”绕B点顺时针旋转900所成的四边形A2B2C2D2 .
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由.