题目内容
【题目】阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:
(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;
(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.
![]()
【答案】(1)对消防知识“特别熟悉”的居民人数为225
(2)恰好选中一男一女的概率为
.
【解析】
试题(1)先求出样本中对消防知识“特别熟悉”的居民所占的百分比,然后再乘以总数即可;
(2)用A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出表格或树状图,再根据概率公式求解.
试题解析:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:
×100%=25%,
该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;
(2)用A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:
![]()
故恰好选中一男一女的概率为:
.
【题目】在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D为AC上点.将BD绕点B顺时针旋转60°得到BE,连接CE.
(1)证明:∠ABD=∠CBE;
(2)连接ED,若ED=2
,求
的值.
![]()
【题目】如图,点P是弧AB所对弦AB上一动点,过点P作PC⊥AB交AB于点P,作射线AC交弧AB于点D.已知AB=6cm,PC=1cm,设A,P两点间的距离为xcm,A,D两点间的距离为ycm.(当点P与点A重合时,y的值为0)
![]()
小平根据学习函数的经验,分别对函数y随自变量x的变化而变化的规律进行了探究.
下面是小平的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
经测量m的值是 (保留一位小数).
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y),并画出函数y的图象;
![]()
(3)结合函数图象,解决问题:当∠PAC=30°,AD的长度约为 cm.