题目内容
的值为( )
A. B. - C. 9 D. -9
小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为 .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)
如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A. 5 B. 8 C. 3 D. 4
如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留).
如图,将△ABC绕点A顺时针旋转 60°得到△AED,若AB=4,AC=3,BC=2,则BE的长为( )
A. 5 B. 4 C. 3 D. 2
解不等式组,并将其解集表示在数轴上.
一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
我国是世界上严重缺水的国家之一,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.请根据信息解答下列问题:
(1)图1中淘米水浇花所在的扇形的圆心角度数为__________________;
(2)补全图2;
(3)求120名同学家庭月人均用水量的中位数和众数;
(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
图1
图2
在矩形ABCD中,,点E为BC的中点,将沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为
A. B. C. D.