题目内容
如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AB上,⊙O经过B,D两点,交BC于点E.
(1)求证:AC是⊙O的切线;
(2)若AB=6,sin∠BAC=,求BE的长.
一个不透明的口袋里装有分别标有汉字“道”、“德”、“青”、“县”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.
(1)若从中任取一个球,球上的汉字刚好是“德”的概率为多少?
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“道德”或“青县”的概率.
实数a,b在数轴上的位置如图所示,下列各式错误的是( )
A. a+b>0 B. ab<0 C. a﹣b<0 D. a﹣b>0
如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
下列各式中,计算不正确的是 ( )
A. =1 B. =1 C. (|a|+1)0=1 D. (-1- a2) 0=1
如图,直线OD与x轴所夹的锐角为30°,OA1的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三边形,点A1、A2、A3…An﹣1在x轴正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点B2的坐标为____,点Bn的坐标为____.
在平面直角坐标系中.对于平面内任一点(m,n),规定以下两种变换:
①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于( )
A. (3,2) B. (3.﹣2) C. (﹣3,2) D. (﹣3,﹣2)
计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
为方便两个有理数比较大小,现提出了4种新方法:
①倒数大的反而小;
②绝对值大的反而小;
③平方后大的数较大;
④把两数求商,若商大于1,则被除数较大;商等于1,则两数相等;商小于1,则除数较大.
这四种方法( )
A. 都正确 B. 都不正确 C. 只有一个正确 D. 有两个正确