题目内容
如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是 .
如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①② B.②③ C.①③ D.①④
如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F。
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③,你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由。
如图,在平面直角坐标系xOy中,A(-3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C8的顶点坐标为______
如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,若,则的值为( )
A. B. C. D.
下列二次根式中,不能与合并的是( )
若a-3b=4,则8-2a+6b的值为 .
如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同的方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.
(1)一个5×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个;
(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个;
(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是 个,最少是 个.(n是正整数)