题目内容
在Rt△ABC中,∠C=90°,∠B=30°,b=10,则c=________,a=________.
20 10
分析:通过“直角三角形中,30度角所对的直角边是所对的斜边的一半”求得c=2b=20.然后根据勾股定理来求a的值.
解答:
解:如图,∵在Rt△ABC中,∠C=90°,∠B=30°,b=10,
∴c=2b=20.
∴由勾股定理得到:a=
=
=10
.
故答案为:20;10
.
点评:本题考查了含30度角的直角三角形和勾股定理.应用含30度角的直角三角形的性质时,要注意找准30°的角所对的直角边,点明斜边.
分析:通过“直角三角形中,30度角所对的直角边是所对的斜边的一半”求得c=2b=20.然后根据勾股定理来求a的值.
解答:
∴c=2b=20.
∴由勾股定理得到:a=
故答案为:20;10
点评:本题考查了含30度角的直角三角形和勾股定理.应用含30度角的直角三角形的性质时,要注意找准30°的角所对的直角边,点明斜边.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |