题目内容
130°
130°
.分析:因为BD、CE均为△ABC的高,则有AEC=∠ADB=∠BDC=90°;又知∠A=50°,可根据三角形的内角和定理得到∠ACE=90°-∠A=90°-50°=40°,最后依据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,得到∠BOC=∠BDC+∠ACE=90°+40°=130°.
解答:解:∵BD、CE均为△ABC的高,
∴∠AEC=∠ADB=∠BDC=90°,
∵∠A=50°,
∴∠ACE=90°-∠A=90°-50°=40°.
则∠BOC=∠BDC+∠ACE=90°+40°=130°.
故答案为:130°.
∴∠AEC=∠ADB=∠BDC=90°,
∵∠A=50°,
∴∠ACE=90°-∠A=90°-50°=40°.
则∠BOC=∠BDC+∠ACE=90°+40°=130°.
故答案为:130°.
点评:本题主要考查三角形的外角性质及三角形的内角和定理.解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.
练习册系列答案
相关题目