题目内容
2:3
2:3
.分析:根据三角形中位线得出ED∥BC,
=
,①求出
=
=
,证△GFD∽△GCB,△HFE∽△HBC,推出
=
=
,
=
=
,求出
=
=
,证△GFH∽△CFB,得出
=
,②,②÷①即可得出答案.
| DE |
| BC |
| 1 |
| 2 |
| DF |
| BC |
| EF |
| BC |
| 1 |
| 4 |
| GF |
| GC |
| DF |
| BC |
| 1 |
| 4 |
| HF |
| HB |
| FE |
| BC |
| 1 |
| 4 |
| HF |
| BF |
| GF |
| CF |
| 1 |
| 3 |
| GH |
| BC |
| 1 |
| 3 |
解答:解:∵DE是△ABC的中位线,
∴ED∥BC,
=
,①
∵F为DE中点,
∴
=
=
,
∵DE∥BC,
∴△GFD∽△GCB,△HFE∽△HBC,
∴
=
=
,
=
=
,
∴
=
=
,
∴
=
=
,
∵∠GFH=∠BFC,
∴△GFH∽△CFB,
∴
=
,②,
②÷①得:
=
,
故答案为:2:3.
∴ED∥BC,
| DE |
| BC |
| 1 |
| 2 |
∵F为DE中点,
∴
| DF |
| BC |
| EF |
| BC |
| 1 |
| 4 |
∵DE∥BC,
∴△GFD∽△GCB,△HFE∽△HBC,
∴
| GF |
| GC |
| DF |
| BC |
| 1 |
| 4 |
| HF |
| HB |
| FE |
| BC |
| 1 |
| 4 |
∴
| HF |
| BH |
| GF |
| CG |
| 1 |
| 4 |
∴
| HF |
| BF |
| GF |
| CF |
| 1 |
| 3 |
∵∠GFH=∠BFC,
∴△GFH∽△CFB,
∴
| GH |
| BC |
| 1 |
| 3 |
②÷①得:
| GH |
| DE |
| 2 |
| 3 |
故答案为:2:3.
点评:本题考查了相似三角形的性质和判定,三角形的中位线的应用,关键是能求出DE:BC=1:2,GH:BC=1:3.
练习册系列答案
相关题目