题目内容

已知平行四边形ABCD,F是BC的延长线上一点,连接AF交CD于E点.EF=3,AE=4,CE=2,求AB的长.

解:∵EF=3,AE=4
∴AF=EF+AE=7.
∵平行四边形ABCD中CE∥AB.
∴△ABF∽△ECF
=
即:=.解得AB=
分析:ABCD是平行四边形,则CE∥AB,得到△ABF∽△ECF,根据相似三角形对应边的比相等即可求解.
点评:本题主要考查了平行于三角形一边的直线与另两边相交,形成的三角形与原三角形相似;以及相似三角形的性质,相似三角形的对应边的比相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网