题目内容
在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.
∵AD为斜边BC上的高,AE⊥CP,
∴Rt△ACD∽Rt△BCA,Rt△ACE∽Rt△PCA,
∴AC2=CD•CB,AC2=CE•CP,
∴CD•CB=CE•CP,
∴△CDE∽△CPB,
∴∠CED=∠CBP,
∴B,D,E,P四点共圆,
∴∠1=∠5+∠6,∠5=∠4,
又∵BQ⊥AB,
∴∠QEP=∠PBQ=90°,
∴B,Q,E,P四点共圆,
∴∠1=∠2+∠3,∠2=∠4,
∴∠3=∠6,
∴D,Q,B,P四点共圆,
而∠PBQ=90°,
∴∠PDQ=90°,
即PD⊥DQ.
分析:设AQ交CP于E点,连ED,EB,PQ,由AD为斜边BC上的高,AE⊥CP,易得Rt△ACD∽Rt△BCA,Rt△ACE∽Rt△PCA,得到AC2=CD•CB,AC2=CE•CP,则CD•CB=CE•CP,得到△CDE∽△CPB,有∠CED=∠CBP,得到B,D,E,P四点共圆,则有∠1=∠5+∠6,∠5=∠4;又
B,Q,E,P四点共圆,得∠1=∠2+∠3,∠2=∠4,所以有∠3=∠6,得到D,Q,B,P四点共圆,即可得到∠PDQ=90°.
点评:本题考查了四点共圆的判定与性质.也考查了三角形相似的判定与性质.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |