题目内容

作业宝如图;已知AB是⊙O的直径,PB⊥AB,PC是⊙O的切线,切点为C.
(1)求证;AC∥OP;
(2)CO的延长线交PB延长线于E交⊙O于F,若⊙O的半径为3,PO=数学公式,求EF的长.

(1)证明:连结OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
在Rt△PCO和Rt△PBO中,

∴Rt△PCO≌RtPBO(HL),
∴∠COP=∠BOP,
∴∠A=∠COB=∠POB,
∴AC∥OP;

(2)解:方法一:
若⊙O的半径为3,PO=3
∴PB=PC=6,
∵∠E=∠E,∠PCE=∠OBE=90°,
∴△EBO∽△ECP,
==,令OE=x,则BE=,CE=x+3,
=
解得:x=5,
∴EF=OE-3=5-3=2;
方法二:
由条件可得出:△EBO∽△ECP,
∵OB=OC=3,PO=3
∴PB=PC=6,
=
=
S△OPC=S△OBP=9,
=
∴S△EBO=6,
∴BE=4,
∴OE=5,
∴EF=2.
分析:(1)首先得出Rt△PCO≌RtPBO,进而得出∠A=∠COB=∠POB,即可得出答案;
(2)首先证明△EBO∽△ECP,即可得出==,进而求出即可.
点评:此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质和切线的性质等知识,根据已知得出△EBO∽△ECP是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网