题目内容
如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;
(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;
(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.
【答案】分析:(1)由BD=tcm,DE=4cm,可得BE=BD+DE=(t+4)cm,又由EF∥AC,即可得△BEF∽△BAC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)分三种情况讨论:①当DF=EF时,②当DE=EF时,③当DE=DF时,利用等腰三角形的性质与相似三角形的判定与性质,即可求得答案;
(3)首先设P是AC的中点,连接BP,可证得点B,N,P共线,即可得点N沿直线BP运动,MN也随之平移,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形,然后求得?PQST的面积即为MN所扫过的面积.
解答:解:(1)∵BD=tcm,DE=4cm,
∴BE=BD+DE=(t+4)cm,
∵EF∥AC,
∴△BEF∽△BCA,
∴EF:CA=BE:BC,
即EF:10=(t+4):16,
解得:EF=
(t+4)(cm);
(2)分三种情况讨论:
①如图1,∵当DF=EF时,
∴∠EDF=∠DEF,
∵AB=AC,
∴∠B=∠C,
∵EF∥AC,
∴∠DEF=∠C,
∴∠EDF=∠B,
∴点B与点D重合,
∴t=0;
②如图2,当DE=EF时,
则4=
(t+4),
解得:t=
;
③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,
∴△DEF∽△ABC.
∴
,
即
,
解得:t=
;
综上所述,当t=0、
或
秒时,△DEF为等腰三角形.
(3)如图4,设P是AC的中点,连接BP,
∵EF∥AC,
∴△FBE∽△ABC.
∴
,
∴
.
又∵∠BEN=∠C,
∴△NBE∽△PBC,
∴∠NBE=∠PBC.
∴点B,N,P共线,
∴点N沿直线BP运动,MN也随之平移.
如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.
∵M、N分别是DF、EF的中点,
∴MN∥DE,且ST=MN=
DE=2.
分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,
∵当t=0时,EF=
(0+4)=
,TK=
EFsin∠DEF=
•
•
=
;
当t=12时,EF=AC=10,PL=
AC•sin∠C=
•10•
=3.
∴PR=PL-RL=PL-TK=3-
=
.
∴S平行四边形PQST=ST•PR=2×
=
.
∴整个运动过程中,MN所扫过的面积为
cm2.
点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形中位线的性质、平行四边形的性质以及矩形的判定与性质等知识.此题综合性很强,难度较大,注意掌握分类讨论思想、方程思想与数形结合思想的应用,注意掌握辅助线的作法.
(2)分三种情况讨论:①当DF=EF时,②当DE=EF时,③当DE=DF时,利用等腰三角形的性质与相似三角形的判定与性质,即可求得答案;
(3)首先设P是AC的中点,连接BP,可证得点B,N,P共线,即可得点N沿直线BP运动,MN也随之平移,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形,然后求得?PQST的面积即为MN所扫过的面积.
解答:解:(1)∵BD=tcm,DE=4cm,
∴BE=BD+DE=(t+4)cm,
∵EF∥AC,
∴△BEF∽△BCA,
∴EF:CA=BE:BC,
即EF:10=(t+4):16,
解得:EF=
①如图1,∵当DF=EF时,
∴∠EDF=∠DEF,
∵AB=AC,
∴∠B=∠C,
∵EF∥AC,
∴∠DEF=∠C,
∴∠EDF=∠B,
∴点B与点D重合,
∴t=0;
则4=
解得:t=
③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,
∴△DEF∽△ABC.
∴
即
解得:t=
综上所述,当t=0、
∵EF∥AC,
∴△FBE∽△ABC.
∴
∴
又∵∠BEN=∠C,
∴△NBE∽△PBC,
∴∠NBE=∠PBC.
∴点B,N,P共线,
∴点N沿直线BP运动,MN也随之平移.
如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.
∵M、N分别是DF、EF的中点,
∴MN∥DE,且ST=MN=
分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,
∵当t=0时,EF=
当t=12时,EF=AC=10,PL=
∴PR=PL-RL=PL-TK=3-
∴S平行四边形PQST=ST•PR=2×
∴整个运动过程中,MN所扫过的面积为
点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形中位线的性质、平行四边形的性质以及矩形的判定与性质等知识.此题综合性很强,难度较大,注意掌握分类讨论思想、方程思想与数形结合思想的应用,注意掌握辅助线的作法.
练习册系列答案
相关题目