题目内容
在矩形ABCD中,AB=1,AD=
,AF平分∠DAB,过C点作CE
BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为( )

| A.1个 | B.2个 | C.3个 | D.4个 |
C
试题分析:根据矩形的性质可得OA=OB=OC=OD,由AD=
根据已知条件不能推出AF=FH,故①错误;
解:∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AD=
∴tan∠ADB=
∴∠ADB=30°,
∴∠ABO=60°,
∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,AC=2AO,BD=2BO,
∴AO=BO,
∴△ABO是等边三角形,
∴AB=BO,∠AOB=∠BAO=60°=∠COE,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵AD∥BC,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=BO,
∴BF=BO,故②正确;
∵∠BAO=60°,∠BAF=45°,
∴∠CAH=15°,
∵CE⊥BD,
∴∠CEO=90°,
∵∠EOC=60°,
∴∠ECO=30°,
∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH,
∴AC=CH,故③正确;
∵△AOB是等边三角形,
∴AO=OB=AB,
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AB=CD,
∴DC=OC=OD,
∵CE⊥BD,
∴DE=EO=
∴BE=3ED,故④正确;
∴正确的有3个,
故选C.
点评:本题知识点较多,综合性强,是中考常见题,一般是中考压轴题,难度较大,需特别注意.
练习册系列答案
相关题目