题目内容
细心观察,认真分析,然后解答问题:
(1)用含n(n是正整数)的等式表示上述变化规律______;
(2)OA10的长______;
(3)求出
+
+
+…+
的值.

|
(1)用含n(n是正整数)的等式表示上述变化规律______;
(2)OA10的长______;
(3)求出
| S | 21 |
| S | 22 |
| S | 23 |
| S | 210 |
(1)根据所给图形,可得OAn=(
)2+12=n,则Sn=
×1×
=
;
即可得规律:(
)2+12=n,Sn=
×1×
=
;
(2)由(1)得OAn=
,故OA10=
;
(3)S12+S22+S32+…+S102=(
)2+(
)2+(
)2+…+(
)2
=
+
+
+
+
+…+
=
.
故答案为:(
)2+12=n,Sn=
;
.
| n-1 |
| 1 |
| 2 |
| n |
| ||
| 2 |
即可得规律:(
| n-1 |
| 1 |
| 2 |
| n |
| ||
| 2 |
(2)由(1)得OAn=
| n |
| 10 |
(3)S12+S22+S32+…+S102=(
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 4 |
| 4 |
| 5 |
| 4 |
| 10 |
| 4 |
=
| 55 |
| 4 |
故答案为:(
| n-1 |
| ||
| 2 |
| 10 |
练习册系列答案
相关题目