题目内容
关于反比例函数,下列结论正确的是( )
A. 函数的图像在第一、三象限 B. 随的增大而增大
C. 随的增大而减少 D. 函数的图像在第二、四象限
认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.
探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.
∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A
探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
某几何体的左视图如下图所示,则该几何体不可能是
A.
B.
C.
D.
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边与另一边之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
反比例函数的图象经过(2,-1),则的值为_______________.
如图,在中, , 、是腰、上的高,交于点.
()求证: .
()若,求的度数.
下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.
已知:线段.
求作:等腰,使, , 边上的高为.
作法:如图,
()作线段;
()作线段的垂直平分线交于点;
()在射线上顺次截取线段,连接, .
所以即为所求作的等腰三角形.
请回答:得到是等腰三角形的作图依据是:__________.
如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=______.
为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金。已知A、B公司两位销售员小李、小张1~6月份的销售额如下表:
(1)请问小李与小张3月份的工资各是多少?
(2)小李1~6月份的销售额与月份的函数关系式是小张1~6月份的销售额也是月份的一次函数,请求出与的函数关系式;
(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资。