题目内容
一张菱形纸片按图1-1、图1-2依次对折后.再按图l-3打出一个圆形小孔,则展开铺平后的图案是( )
A. B. C. D.
(本题12分)已知抛物线y=+c与x轴交于A(-1,0),B两点,交y轴于点C
(1)求抛物线的解析式
(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长
货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )
图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )
A.甲、乙都可以
B.甲、乙都不可以
C.甲不可以,乙可以
D.甲可以,乙不可以
如图,AB//EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120° B.130° C.140° D.150°
某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;
(2)设每月用水量为吨,应交水费为元,写出与之间的函数关系式;
(3)小黄家3月份用水26吨,他家应交水费多少元?
已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是 .
(本题满分12分)如图,在平面直角坐标系中,⊙O的圆心在坐标原点,半径为3.过A(-7,9),B(0,9)的抛物线(a,b,c为常数,且a≠0)与x轴交于D,E (点D在点E右边)两点,连结AD.
(1)若点D的坐标为D(3,0).①请直接写出此时直线AD与⊙O的位置关系;②求此时抛物线对应的函数关系式;
(2)若直线AD和⊙O相切,求抛物线二次项系数a的值;
(3)当直线AD和⊙O相交时,直接写出a的取值范围.
下列各数:①;②;③;④中是负数的是( )
(A)①②③ (B)①②④ (C)②③④ (D)①②③④