ÌâÄ¿ÄÚÈÝ
£¨2009•÷ÖÝһ죩Èçͼ£¬Ö±ÏßlÉϰڷÅÓеÈÑü¡÷PQRºÍÌÝÐÎABCD£¬¡ÏPQR=120¡ã£¬PR=6cm£¬AD¡ÎBC£¬AB=AD=DC=2cm£¬BC=4cm£®½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Ðýת£º½«¡÷PQRÈÆµãP˳ʱÕë·½ÏòÐýת150¡ãµÃµ½¡÷PQ1R1£¬Ôò
µÄ³¤µÈÓÚ
£¨2£©·ÕÛ£º½«¡÷PQ1R1ÑØ¹ýµãR1ÇÒÓëÖ±Ïßl´¹Ö±µÄÖ±Ïß·ÕÛ£¬µÃµ½·ÕÛºóµÄ¶ÔӦͼÐΡ÷R1Q2P1£¬ÊÔÅжÏËıßÐÎPQ1Q2P1µÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Æ½ÒÆ£ºÉèP1¡¢BÁ½µãÖØºÏʱ£¬µÈÑü¡÷R1Q2P1ÒÔ1cm/ÃëµÄËÙ¶ÈÑØÖ±ÏßlÏòÓÒÔÈËÙÔ˶¯£¬t ÃëʱÌÝÐÎABCDÓëµÈÑü¡÷R1Q2P1ÖØºÏ²¿·ÖµÄÃæ»ý¼ÇΪS£®µ±0£¼t¡Ü6ʱ£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ö¸³öSµÄ×î´óÖµ£®

£¨1£©Ðýת£º½«¡÷PQRÈÆµãP˳ʱÕë·½ÏòÐýת150¡ãµÃµ½¡÷PQ1R1£¬Ôò
| RR1 |
5¦Ð
5¦Ð
£»£¨2£©·ÕÛ£º½«¡÷PQ1R1ÑØ¹ýµãR1ÇÒÓëÖ±Ïßl´¹Ö±µÄÖ±Ïß·ÕÛ£¬µÃµ½·ÕÛºóµÄ¶ÔӦͼÐΡ÷R1Q2P1£¬ÊÔÅжÏËıßÐÎPQ1Q2P1µÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Æ½ÒÆ£ºÉèP1¡¢BÁ½µãÖØºÏʱ£¬µÈÑü¡÷R1Q2P1ÒÔ1cm/ÃëµÄËÙ¶ÈÑØÖ±ÏßlÏòÓÒÔÈËÙÔ˶¯£¬t ÃëʱÌÝÐÎABCDÓëµÈÑü¡÷R1Q2P1ÖØºÏ²¿·ÖµÄÃæ»ý¼ÇΪS£®µ±0£¼t¡Ü6ʱ£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ö¸³öSµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©Ö±½Ó¸ù¾Ý»¡³¤¹«Ê½½øÐмÆËã¼´¿É£»
£¨2£©ÓÉͼÐÎÐýתµÄÐÔÖÊ¿ÉÖª¡ÏRPQ=¡ÏPR1Q1=¡ÏQ2R1P1=30¡ã£¬¸ù¾ÝƽÐÐÏßµÄÅж¨¶¨Àí¿ÉÖªPQ1¡ÎR1Q2£¬½ø¶ø¿ÉµÃ³öËıßÐÎPQ1Q2R1ÊÇÆ½ÐÐËıßÐΣ¬¹Ê¿ÉµÃ³ö½áÂÛ£»
£¨3£©£©¢Ùµ±0£¼t¡Ü4ʱ£¬BP1=t£¬¡ÏKP1B=30¡ã£¬¡ÏABP1=60¡ã£¬ÓÉÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¼°ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¿ÉÓÃt±íʾ³öKB£¬KP1µÄÖµ£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
µ±4£¼t¡Ü6ʱ£¬BR1=6-t£¬CP1=t-4£¬ÔÙ¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊÓÃt±íʾ³ö¡÷Q2R1P1¡¢¡÷MR1B¼°¡÷CP1NµÄÃæ»ý£¬¸ù¾ÝS=S¡÷Q2R1P1-S¡÷BR1M-S¡÷CP1N=S¡÷Q2R1P1
¼´¿ÉµÃ³ö½áÂÛ£®
£¨2£©ÓÉͼÐÎÐýתµÄÐÔÖÊ¿ÉÖª¡ÏRPQ=¡ÏPR1Q1=¡ÏQ2R1P1=30¡ã£¬¸ù¾ÝƽÐÐÏßµÄÅж¨¶¨Àí¿ÉÖªPQ1¡ÎR1Q2£¬½ø¶ø¿ÉµÃ³öËıßÐÎPQ1Q2R1ÊÇÆ½ÐÐËıßÐΣ¬¹Ê¿ÉµÃ³ö½áÂÛ£»
£¨3£©£©¢Ùµ±0£¼t¡Ü4ʱ£¬BP1=t£¬¡ÏKP1B=30¡ã£¬¡ÏABP1=60¡ã£¬ÓÉÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¼°ÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¿ÉÓÃt±íʾ³öKB£¬KP1µÄÖµ£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
µ±4£¼t¡Ü6ʱ£¬BR1=6-t£¬CP1=t-4£¬ÔÙ¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊÓÃt±íʾ³ö¡÷Q2R1P1¡¢¡÷MR1B¼°¡÷CP1NµÄÃæ»ý£¬¸ù¾ÝS=S¡÷Q2R1P1-S¡÷BR1M-S¡÷CP1N=S¡÷Q2R1P1
¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©¡ßPR=6cm£¬½«¡÷PQRÈÆµãP˳ʱÕë·½ÏòÐýת150¡ãºó
ÊÇÒÔµãPΪԲÐÄ£¬ÒÔPRΪ°ë¾¶£¬Ô²ÐĽÇÊÇ150¡ãµÄÒ»¶Î»¡£¬
¡à
=
=5¦Ðcm£»
£¨2£©ËıßÐÎPQ1Q2P1ÊǵÈÑüÌÝÐΣ®
ÀíÓÉ£º¡ß¡ÏPQR=120¡ã£¬
¡à¡ÏRPQ=¡ÏPR1Q1=¡ÏQ2R1P1=30¡ã£¬
¡àPQ1¡ÎR1Q2£¬ÓÉÕÛµþµÄÐÔÖʿɵÃQ1P=Q2R1=P1Q2£¬
¡àËıßÐÎPQ1Q2R1ÊÇÆ½ÐÐËıßÐΣ¬
¡àËıßÐÎPQ1Q2P1ÊǵÈÑüÌÝÐΣ®
£¨3£©¢Ùµ±0£¼t¡Ü4ʱ£¬Èçͼ1£¬ÒÀÌâÒâÓУºBP1=t£¬¡ÏKP1B=30¡ã£¬¡ÏABP1=60¡ã£¬
¡àP1K¡ÍBK£¬
¡àKB=
BP1=
t£¬KP1=
BP1=
t£¬
¡àS=
BK•KP1=
t2£¬
¡àµ±t=4ʱ£¬×î´óֵΪ2
cm3£®
¢Úµ±4£¼t¡Ü6ʱ£¬Èçͼ2£¬ÒÀÌâÒâÓУºBR1=6-t£¬CP1=t-4£¬
¡ß¡÷Q2R1P1¡×¡÷MR1B¡×¡÷CP1N£¬
¡à
=£¨
£©2=£¨
£©2£¬
=£¨
£©2=£¨
£©2£¬
¡àS=S¡÷Q2R1P1-S¡÷BR1M-S¡÷CP1N=S¡÷Q2R1P1
=[1-£¨
£©2-£¨
£©2]
=-
£¨t-5£©2+
£¬
¡àµ±t=5ʱ£¬×î´óֵΪ
cm2£¬
×ÛÉÏËùÊö£¬Ãæ»ý×î´óֵΪ
cm2£®

| RR1 |
¡à
| RR1 |
| 150¦Ð¡Á6 |
| 180 |
£¨2£©ËıßÐÎPQ1Q2P1ÊǵÈÑüÌÝÐΣ®
ÀíÓÉ£º¡ß¡ÏPQR=120¡ã£¬
¡à¡ÏRPQ=¡ÏPR1Q1=¡ÏQ2R1P1=30¡ã£¬
¡àPQ1¡ÎR1Q2£¬ÓÉÕÛµþµÄÐÔÖʿɵÃQ1P=Q2R1=P1Q2£¬
¡àËıßÐÎPQ1Q2R1ÊÇÆ½ÐÐËıßÐΣ¬
¡àËıßÐÎPQ1Q2P1ÊǵÈÑüÌÝÐΣ®
£¨3£©¢Ùµ±0£¼t¡Ü4ʱ£¬Èçͼ1£¬ÒÀÌâÒâÓУºBP1=t£¬¡ÏKP1B=30¡ã£¬¡ÏABP1=60¡ã£¬
¡àP1K¡ÍBK£¬
¡àKB=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
¡àS=
| 1 |
| 2 |
| ||
| 8 |
¡àµ±t=4ʱ£¬×î´óֵΪ2
| 3 |
¢Úµ±4£¼t¡Ü6ʱ£¬Èçͼ2£¬ÒÀÌâÒâÓУºBR1=6-t£¬CP1=t-4£¬
¡ß¡÷Q2R1P1¡×¡÷MR1B¡×¡÷CP1N£¬
¡à
| S¡÷BR1M |
| S¡÷Q 2R1P1 |
| BR1 |
| R1Q2 |
| 6-t | ||
2
|
| S¡÷CP1N |
| S¡÷Q2R1P1 |
| CP1 |
| R1Q2 |
| t-4 | ||
2
|
¡àS=S¡÷Q2R1P1-S¡÷BR1M-S¡÷CP1N=S¡÷Q2R1P1
=[1-£¨
| 6-t | ||
2
|
| t-4 | ||
2
|
=-
| ||
| 2 |
5
| ||
| 2 |
¡àµ±t=5ʱ£¬×î´óֵΪ
5
| ||
| 2 |
×ÛÉÏËùÊö£¬Ãæ»ý×î´óֵΪ
5
| ||
| 2 |
µãÆÀ£º±¾Ì⿼²éµÄÊÇ·Õ۱任£¬Éæ¼°µ½ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¶þ´Îº¯ÊýµÄÐÔÖʼ°ÐýתµÄÐÔÖÊ¡¢»¡³¤¹«Ê½µÈ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿