题目内容
有同品种的工艺品件,其中一等品件、二等品件、三等品件,从中任取件,取得________等品的可能性最大.
如图,在大小为4×4的正方形网格中,是相似三角形的是( )
A. ①和② B. ②和③ C. ①和③ D. ②和④
一般说,当一个人脚到肚脐的距离与身高的比约为时是比较好看的黄金身段.某人的身高为,肚脐到的脚的距离为,她要穿一双凉鞋使“身材”达到黄金身段,则所穿凉鞋的高度约为________.
如图,直线与轴交于点,与轴交于点,抛物线经过、两点.
求抛物线的解析式;
如图,点是直线上方抛物线上的一动点,当面积最大时,请求出点的坐标和面积的最大值?
在的结论下,过点作轴的平行线交直线于点,连接,点是抛物线对称轴上的动点,在抛物线上是否存在点,使得以、、、为顶点的四边形是平行四边形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
用配方法将二次函数化成的形式,则y=______.
物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为( )
A. B. C. D.
我们知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,这一种方法称为配方法,利用配方法请解以下各题:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:当a取不同的实数时在得到的代数式a2﹣4a的值中是否存在最小值?请说明理由.
(3)应用:如图.已知线段AB=6,M是AB上的一个动点,设AM=x,以AM为一边作正方形AMND,再以MB、MN为一组邻边作长方形MBCN.问:当点M在AB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.
一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为( )
A. 72米 B. 36米 C. 米 D. 米
比较大小:-4______ -3, -|-5|______-(-2)