题目内容
如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=9,,则EC的长是( )
A.4.5 B.8 C.12 D.14
(9分)如图所示,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,点A.
(1)求反比例函数与一次函数的解析式;
(2)点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
α,β是方程x2+2x-5=0的两个实数根,则αβ的值为( )
A.5 B.-5 C.2 D.-2
如图,以O为圆心,半径为2的圆与反比例函数y=(x>0)的图象交于A、B两点,则弧AB的长度为 .
分解因式:x2-2x= .
如图所示,在平面直角坐标系中,抛物线经过、、三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).经过点P作y轴的垂线,重足为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量的取值范围,并求S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点,求出的坐标,并判断是否在该抛物线上.
如图,一次函数y=x+6与反比例函数的图象相交于A,B两点,与x轴、y轴交于E、F,点B的横坐标为。
(1)试确定反比例函数的解析式;
(2)求点E、F的坐标。
-3的绝对值是( )
A.3 B.-3 C. D.
如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是( )
A.13 B.26 C.36 D.39