题目内容
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c.
(1)已知a=40,c=41,求b;
(2)已知a:b=3:4,c=15,求b;
(3)已知c=50,a=30,CD⊥AB于D,求CD.
(1)已知a=40,c=41,求b;
(2)已知a:b=3:4,c=15,求b;
(3)已知c=50,a=30,CD⊥AB于D,求CD.
(1)根据勾股定理得,
b=
=
=9;
(2)∵a:b=3:4,
∴a=
b,
由勾股定理得,
a2+b2=c2,
(
b)2+b2=152,
解得b=12;
(3)如图,
根据勾股定理得,
b=
=
=40,
S△ABC=
ab=
c×CD,
×40×30=
×50×CD,
解得CD=24.
b=
| c2-a2 |
| 412-402 |
(2)∵a:b=3:4,
∴a=
| 3 |
| 4 |
由勾股定理得,
a2+b2=c2,
(
| 3 |
| 4 |
解得b=12;
(3)如图,
b=
| c2-a2 |
| 502-302 |
S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解得CD=24.
练习册系列答案
相关题目