题目内容

如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其坐标为t,

①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;

②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.


解答:

解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,

∴OB=3OA=3.

∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,

∴△DOC≌△AOB,

∴OC=OB=3,OD=OA=1,

∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).

代入解析式为

解得:

∴抛物线的解析式为y=﹣x2﹣2x+3;

(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,

∴对称轴l=﹣=﹣1,

∴E点的坐标为(﹣1,0).

如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);

当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.

∴MP=3EM.

∵P的横坐标为t,

∴P(t,﹣t2﹣2t+3).

∵P在二象限,

∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,

∴﹣t2﹣2t+3=3(﹣1﹣t),

解得:t1=﹣2,t2=﹣3(与C重合,舍去),

∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.

∴P(﹣2,3).

∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);

②设直线CD的解析式为y=kx+b,由题意,得

解得:

∴直线CD的解析式为:y=x+1.

设PM与CD的交点为N,则点N的坐标为(t,t+1),

∴NM=t+1.

∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2+2.

∵S△PCD=S△PCN+S△PDN

∴S△PCD=PM•CM+PN•OM

=PN(CM+OM)

=PN•OC

=×3(﹣t2+2)

=﹣(t+2+

∴当t=﹣时,S△PCD的最大值为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网