题目内容

已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,  每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;

(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.

 

【答案】

解:(1)如图,△A1B1C1即为所求,C1(2,-2)。(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10

【解析】(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标。

(2)延长BA到A2,使AA2=AB,延长BC到C2,使CC2=BC,然后连接A2C2即可,再根据平面直角坐标系写出C2点的坐标,利用△A2BC2所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解:

△A2BC2的面积=6×4-×2×6-×2×4-×2×4=10。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网