题目内容

如图,正方形ABCD的边长为3cm,∠ABE=15°,且AB=AE,则DE=________cm.

3
分析:根据∠ABE=15°,AB=AE,易得∠AEB=∠ABE=15°,再根据AD∥BC,可得∠EBC=75°,∠AFE=105°,∠DAE=60°,进而可得ADE=∠AED=60°,故△ADE是等边三角形,由等边三角形的性质可得DE的长.
解答:∵∠ABE=15°,AB=AE
∴∠AEB=∠ABE=15°
∴∠EFD=∠AFB=90°-15°=75°
故∠AFE=180°-75°=105°
∴∠DAE=180°-105°-15°=60°
又∵AB=AE
∴△ADE是等边三角形,
所以DE=AD=3cm.
故答案为3.
点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网