题目内容
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为![]()
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数
的图象和性质.
①填写下表,画出函数的图象;
|
x |
… |
|
|
|
1 |
2 |
3 |
4 |
… |
|
y |
… |
|
|
|
|
|
|
|
… |
![]()
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.
【答案】
⑴①
,
,
,2,
,
,
.
函数![]()
的图象如图.
![]()
②当
时,
随
增大而减小;当
时,
随
增大而增大;当
时函数![]()
的最小值为2
③
=![]()
当
=0,即
时,函数![]()
的最小值为2.
⑵当该矩形的长为
时,它的周长最小,最小值为
.
【解析】
试题分析:解⑴①
,
,
,2,
,
,
.
函数![]()
的图象如图.
![]()
②本题答案不唯一,下列解法供参考.
当
时,
随
增大而减小;当
时,
随
增大而增大;当
时函数![]()
的最小值为2.
③![]()
=![]()
=![]()
=![]()
当
=0,即
时,函数![]()
的最小值为2.
⑵当该矩形的长为
时,它的周长最小,最小值为
.
考点:描点法画函数图像,反比例函数的性质,二次函数配方求值
点评:中考创新题目之一,阅读理解题,难度中等,考生需要阅读并理解好题目,找到规律。
练习册系列答案
相关题目
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
| a |
| x |
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
| 1 |
| x |
①填写下表,画出函数的图象;
| x | … |
|
|
|
1 | 2 | 3 | 4 | … | ||||||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
| 1 |
| x |
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为![]()
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数
的图象和性质.
①填写下表,画出函数的图象;
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | | | | | | | | … |
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
①填写下表,画出函数的图象;
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
①填写下表,画出函数的图象;
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.