搜索
题目内容
已知△ABC中,AB=AC,∠A=36°,仿照图①,请你再设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.
试题答案
相关练习册答案
解:如图,
.
分析:利用三角形内角和定理和三角形外角性质以及提供的分法来作图.
点评:本题考查了等腰三角形的性质及三角形的内角和定理及三角形外角的性质;顶角为36°和108°的等腰三角形也是特殊的三角形,它可得到与它相似的三角形,主要是作底角的平分线.
练习册系列答案
中考导学案系列答案
中考大提速系列答案
中考专题通系列答案
中考第三轮复习冲刺专用模拟试卷系列答案
中考攻略中考及会考真题汇编系列答案
培优口算题卡系列答案
开心口算题卡系列答案
口算题卡河北少年儿童出版社系列答案
黄冈状元成才路口算题卡系列答案
趣味数学口算题卡系列答案
相关题目
如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
(角平分线的定义).
在△ABD和△ACD中,
( )
( )
( )
∴△ABD≌△ACD
.
已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.
已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
.
如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中
∴△ABD≌△ACD
SAS
SAS
.
如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案