题目内容

(2009•乐山)如图,一次函数y=-x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

【答案】分析:(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.
(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.
解答:(1)解:∵y=-x-2
令y=0,得x=-4,即A (-4,0)
由P为AB的中点,PC⊥x轴可知C点坐标为(-2,0)
又∵tan∠AOQ=可知QC=1
∴Q点坐标为(-2,1)
将Q点坐标代入反比例函数得:1=
∴可得k=-2;

(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ
∴四边形APOQ是菱形.
点评:本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网