题目内容

(每小题5分,共10分)如图,在Rt△ABC中,∠ABC=90°将Rt△ABC绕点C顺时针方向旋转60°得到△DECEAC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF连接AD
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交ADG连接CG,请问:
四边形ABCG是什么特殊平行四边形?为什么?
 
(1)略                      (2)四边形ABCG是矩形

分析:
(1)需证明△ACD是等边三角形、△AFC是等边三角形,即可证明四边形AFCD是菱形;
(2)可先证四边形ABCG是平行四边形,再由∠ABC=90°,可证四边形ABCG是矩形。
解答:
(1)证明:Rt△DEC是由Rt△ABC绕C点旋转60°得到,
∴AC=DC,∠ACB=∠ACD=60°,
∴△ACD是等边三角形,
∴AD=DC=AC,(1分)
又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到,
∴AC=AF,∠ABF=∠ABC=90°,
∵∠ACB=∠ACD=60°,
∴△AFC是等边三角形,
∴AF=FC=AC,(3分)
∴AD=DC=FC=AF,
∴四边形AFCD是菱形。
(2)四边形ABCG是矩形。
证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,
∴∠EDC=∠BAC=1/2∠FAC=30°,且△ABC为直角三角形,
∴BC=1/2AC,
∵EC=CB,
∴EC=1/2AC,
∴E为AC中点,
∴DE⊥AC,
∴AE=EC,
∵AG∥BC,
∴∠EAG=∠ECB,∠AGE=∠EBC,
∴△AEG≌△CEB,
∴AG=BC,
∴四边形ABCG是平行四边形,
∵∠ABC=90°,
∴四边形ABCG是矩形。
点评:此题主要考查菱形和矩形的判定,综合应用等边三角形的判定、全等三角形的判定等知识是解题的关键。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网