题目内容
如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=________.
32°
分析:根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.
解答:∵直线a∥b,AM⊥b,
∴AM⊥a(在同一平面内,垂直于两条平行线中的一条,那么必定垂直于另一条);
∴∠2=180°-90°-∠1;
∵∠1=58°,
∴∠2=32°.
故答案是:32°.
点评:本题主要考查了平行线的性质.在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线.
分析:根据“在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线”推知AM⊥a;然后由平角是180°、∠1=58°来求∠2的度数即可.
解答:∵直线a∥b,AM⊥b,
∴AM⊥a(在同一平面内,垂直于两条平行线中的一条,那么必定垂直于另一条);
∴∠2=180°-90°-∠1;
∵∠1=58°,
∴∠2=32°.
故答案是:32°.
点评:本题主要考查了平行线的性质.在同一平面内,垂直于两条平行线中的一条直线,那么必定垂直于另一条直线.
练习册系列答案
相关题目