题目内容

已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.

(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;

(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;

(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

(1)证明:∵b=2a,点M是AD的中点,

∴AB=AM=MD=DC=a,

又∵在矩形ABCD中,∠A=∠D=90°,

∴∠AMB=∠DMC=45°,

∴∠BMC=90°.

(2)解:存在,

理由:若∠BMC=90°,

则∠AMB+∠DMC=90°,

又∵∠AMB+∠ABM=90°,

∴∠ABM=∠DMC,

又∵∠A=∠D=90°,

∴△ABM∽△DMC,

=

设AM=x,则=

整理得:x2﹣bx+a2=0,

∵b>2a,a>0,b>0,

∴△=b2﹣4a2>0,

∴方程有两个不相等的实数根,且两根均大于零,符合题意,

∴当b>2a时,存在∠BMC=90°,

(3)解:不成立.

理由:若∠BMC=90°,

由(2)可知x2﹣bx+a2=0,

∵b<2a,a>0,b>0,

∴△=b2﹣4a2<0,

∴方程没有实数根,

∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网