题目内容

如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.

(1)求证:AP是⊙O的切线;

(2)求PD的长.

考点:切线的判定;圆周角定理;解直角三角形。

解答:(1)证明:连接OA.

∵∠B=60°,

∴∠AOC=2∠B=120°,

又∵OA=OC,

∴∠ACP=∠CAO=30°,

∴∠AOP=60°,

∵AP=AC,

∴∠P=∠ACP=30°,

∴∠OAP=90°,

∴OA⊥AP,

∴AP是⊙O的切线,

(2)解:连接AD.

∵CD是⊙O的直径,

∴∠CAD=90°,

∴AD=AC•tan30°=3×=

∵∠ADC=∠B=60°,

∴∠PAD=∠ADC﹣∠P=60°﹣30°,

∴∠P=∠PAD,

∴PD=AD=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网