题目内容
分解因式:a 2-9= .
下列方程:
①;
②;
③;
④;
⑤;
⑥.
其中是二元一次方程的是( )
A.① B.①④ C.①③ D.①②④⑥
某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )
A. B. C. D.
一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字 、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).
如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号).
某厂1月份生产原料a吨,以后每个月比前一个月增产x%,3月份生产原料的吨数是( )
A.a(1+x)2 B.a(1+x%)2 C.a+a·x% D.a+a·(x%)2
提出问题:
如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:
这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.
尝试解决:
(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,
从而平分蛋糕.
(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB=4 cm,BC =6 cm,CD= 5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.
如图,正方形ABCD中,∠DAF=250,AF交对角线BD于点E,那么∠BEC等于( )
A.450 B.600 C.700 D.750
(本题满分8分)△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移3个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标.(不写解答过程,直接写出结果).