题目内容
如图,矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使P与E重合,折痕交PF于Q,则线段PQ的长是 cm.
过Q点作QG⊥CD,垂足为G点,连接QE,
设PQ=x,由折叠及矩形的性质可知,
EQ=PQ=x,QG=PD=3,EG=DG-DE=PQ-DE=x-2,
在Rt△EGQ中,由勾股定理得
EG2+GQ2=EQ2,即:(x-2)2+32=x2,
解得:x="13/4" ,即PQ="13/4" .
设PQ=x,由折叠及矩形的性质可知,
EQ=PQ=x,QG=PD=3,EG=DG-DE=PQ-DE=x-2,
在Rt△EGQ中,由勾股定理得
EG2+GQ2=EQ2,即:(x-2)2+32=x2,
解得:x="13/4" ,即PQ="13/4" .
练习册系列答案
相关题目