题目内容
∠A的两边与∠B的两边分别平行,且3∠A-∠B=60°,则∠B的度数为____________.
已知某实验区甲、乙品种水稻的平均产量相等,且甲、乙品种水稻产量的方差分别为=79.6,=68.5.由此可知:在该地区____种水稻更具有推广价值.
如图①,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图①所示,其中,DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD,ME,MF,MG.则下列结论正确的是__________(填写序号)
①四边形AFMG是菱形;②△DFM和△EGM都是等腰三角形;③MD=ME;④MD⊥ME.
(2)数学思考:
如图②,在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程.
(3)类比探究:如图③Rt△ABC中,斜边BC=10,AB=6,分别以AB、AC为斜边作等腰直角三角形ABD和ACE,请直接写出DE的长.
在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )
A.众数是90分 B.中位数是90分 C.平均数是90分 D.极差是15分
如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:.
把命题“等角的补角相等”改写成“如果……那么………”的形式是 ;
如图,下列条件中,能判断DE∥AC的是( )
A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠2
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是 ,小正方形的面积是 ,直角三角形的两直角边分别为 、 ,那么 的值是 .
如图①,在矩形 ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿 D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.
(1)、参照图象,求b、图②中c及d的值;
(2)、连接PQ,当PQ平分矩形ABCD的面积时,运动时间x的值为 ;
(3)、当两点改变速度后,设点P、Q在运动线路上相距的路程为y(cm),求y(cm)与运动时间x(秒)之间的函数关系式,并写出自变量x的取值范围;
(4)、若点P、点Q在运动路线上相距的路程为25cm,求x的值.