题目内容
如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.
A.3 B.4 C.5 D.6
函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
已知二次函数y=x2-4x+a,下列说法错误的是( )
A.当x<1时,y随x的增大而减小
B.若图象与x轴有交点,则a≤4
C.当a=3时,不等式x2-4x+a>0的解集是1<x<3
D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3
小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.
这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?
分解因式:ab3-ab= .
如图,抛物线 y=ax2+bx+3经过A(1,0)、B(4,0)两点.
(1)求抛物线的解析式;
(2)如图1,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.
(3)如图2,点Q是线段OB上一动点,连接BC,在线段BC上存在点M,使△CQM为等腰三角形且△BQM为直角三角形?求点M的坐标.
现有一个圆心角为90°,半径为4cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 .
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件,设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=-x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=-x+4是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y=x2-2x-k是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).
下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
C.“明天降雨的概率为”,表示明天有半天都在降雨
D.了解一批电视机的使用寿命,适合用普查的方式