题目内容

(本题满分8分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为上一点,BCAF,延长DFBA的延长线交于E

(1)求证△ABD为等腰三角形.

(2)求证ACAFDFFE

 

 

 

 

 

 

 

(1)证法一:连CF、BF

∠ACD=∠MCD=∠CDB+∠CBD=∠CFB+∠CFD=∠DFB

而∠ACD=∠DFB=∠DAB又∠ACD=∠DBA

∴∠DAB=∠DBA   ∴△ABD为等腰三角形 ……(3分)

证法二:

由题意有∠MCD=∠ACD =∠DBA,又∠MCD+∠BCD=∠DAB+∠BCD=180°,

∴∠MCD=∠DAB,∴∠DAB=∠DBA即△.ABD为等腰三角形    ……(3分)

(2)由(1)知AD=BD,BC=AF,则弧AFD=弧BCD,弧AF=弧BC,

∴弧CD=弧DF,∴弧CD=弧DF……①                    ……(4分)

又BC=AF,∴∠BDC=∠ADF,∠BDC+∠BDA=∠ADF+∠BDA,即∠CDA=∠BDF,

而∠FAE+∠BAF=∠BDF+∠BAF=180°,∴∠FAE=∠BDF=∠CDA,

同理∠DCA=∠AFE                                    ……(6分)

∴在△CDA与△FDE中,∠CDA=∠FAE,∠DCA=∠AFE

∴△CDA∽△FAE

∴ ,即CD·EF=AC·AF,又由①有AC·AF=DF·EF

命题即证         ……(8分)

 

 解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网