题目内容
【题目】如图,已知抛物线
过点
,
,
.点
为抛物线上的动点,过点
作
轴,交直线
于点
,交
轴于点
.
![]()
(1)求二次函数
的表达式;
(2)过点
作
轴,垂足为点
.若四边形
为正方形(此处限定点
在对称轴的右侧),求该正方形的面积;
(3)若
,
,求点
的横坐标.
【答案】(1)y=﹣x2+2x+3(2)24+8
或24﹣8
(3)点M的横坐标为
、2、﹣1、![]()
【解析】
试题分析:(1)待定系数法求解可得;
(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;
(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.
试题解析:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),
∴设抛物线的函数解析式为y=a(x+1)(x﹣3),
将点C(0,3)代入上式,得:3=a(0+1)(0﹣3),
解得:a=﹣1,
∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)由(1)知,抛物线的对称轴为x=﹣
=1,
如图1,设点M坐标为(m,﹣m2+2m+3),
∴ME=|﹣m2+2m+3|,
∵M、N关于x=1对称,且点M在对称轴右侧,
∴点N的横坐标为2﹣m,
∴MN=2m﹣2,
∵四边形MNFE为正方形,
∴ME=MN,
∴|﹣m2+2m+3|=2m﹣2,
分两种情况:
①当﹣m2+2m+3=2m﹣2时,解得:m1=
、m2=﹣
(不符合题意,舍去),
当m=
时,正方形的面积为(2
﹣2)2=24﹣8
;
②当﹣m2+2m+3=2﹣2m时,解得:m3=2+
,m4=2﹣
(不符合题意,舍去),
当m=2+
时,正方形的面积为[2(2+
)﹣2]2=24+8
;
综上所述,正方形的面积为24+8
或24﹣8
.
(3)设BC所在直线解析式为y=kx+b,
把点B(3,0)、C(0,3)代入表达式,得:
,解得:
,
∴直线BC的函数表达式为y=﹣x+3,
设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),
①点M在对称轴右侧,即a>1,
则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2,
若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,
解得:a=
或a=
<1(舍去);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a,
解得:a=﹣1(舍去)或a=2;
②点M在对称轴右侧,即a<1,
则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,
若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,
解得:a=﹣1或a=2(舍);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2,
解得:a=
(舍去)或a=
;
综上,点M的横坐标为
、2、﹣1、
.