题目内容

如图,在图1中,A1、B1、C1分别是等边△ABC的边BC、CA、AB的中点,在图2中,A2,B2,C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中菱形的个数共有(  )个.

精英家教网
A.n2B.2nC.3nD.3n+1
在图(1)中,A1、B1、C1分别是等边三角形△ABC的边BC、CA、AB的中点,
∴A1C1AB1A1B1BC1A1C1B1C
∵A1C1=AB=1A1B1=BC1=A1C1=B1C,
∴四边形A1B1AC1、A1B1C1B、A1C1B1C是菱形,共有3个.
在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,
同理可证:四边形A1B1AC1、A1B1C1B、A1C1B1C、A2B2C2B1、A2B2A1C2、A2C2B2C1是菱形,共有6个.

按此规律,则第n个图形中菱形的个数共有3n个.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网