题目内容

28、在等腰直角△ABC中,∠C=90°,AC=BC,D是AB上任一点,AE⊥CD于E,BF⊥CD交CD延长线于F,CH⊥AB于H,交AE于G.求证:(1)BD=CG;(2)DF=GE.
分析:本题通过证明△ACE≌△BCF得出CE=BF,再证明△CEG≌△BDF得出所求结论.
解答:证明:根据题意∠AEC=∠CFB=90°,
∴∠CAE+∠ACE=90°,∠BCF+∠ACE=90°.
∴∠CAE=∠BCF.
又∵AC=BC,
∴△ACE≌△BCF.
∴BF=CE.
∵∠BDF+∠DBF=90°,∠CGE+∠GCE=90°,∠GCE+∠HDC=90°,∠BDF=∠ADC(对顶角相等),
∴∠CGE=∠BDF.
∵CE=BF,∠CEG=∠BFD=90°,
∴△CEG≌△BFD.
BD=CG,DF=GE.
点评:本题灵活运用三角形全等的判定和性质、等腰三角形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网